English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64185/96962 (66%)
造訪人次 : 12698435      線上人數 : 2885
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/87501


    題名: 動態價格跳躍與最小變異數避險組合的避險效益 : 以布蘭特原油與期貨價格為例
    其他題名: Dynamic price jump and hedging effectiveness for the minimum variance hedging portfolio : the case of Brent crude oil and futures price
    作者: 陶怡珍;Tao, Yi-Chen
    貢獻者: 淡江大學管理科學學系碩士班
    莊忠柱;Chuang, Chung-Chu
    關鍵詞: CBP-GARCH模型;相關跳躍強度;移動視窗;最小變異數避險組合;期貨;避險績效;CBP-GARCH Model;Correlated Jump Intensity;Futures;Hedging Effectiveness;Rolling Window
    日期: 2012
    上傳時間: 2013-04-13 11:16:41 (UTC+8)
    摘要: 原油價格波動受國際政經影響甚劇,針對原油價格波動進行避險已成為投資人的主要課題之一。由於原油價格與期貨價格可能皆會因稀少事件的發生而存著價格不連續現象。本研究先利用Chan(2003)提出的雙變量CBP-GARCH模型捕捉價格不連續的變動及現貨報酬與期貨報酬的共變異數關係。本研究以2010年至2011年英國布蘭特原油價格為主要研究對象,利用移動視窗(rolling window)法探討樣本外(out of sample)條件最小變異數避險組合之避險效益,比較未避險模型、雙變量GARCH(1,1)模型與雙變量CBP-GARCH(1,1)模型的條件最小變異數避險組合之避險效益。研究發現雙變量GARCH(1,1)模型與雙變量CBP-GARCH(1,1)模型存在著條件最小變異數避險組合之避險效益,且雙變量CBP-GARCH(1,1)模型較雙變量GARCH(1,1)模型的避險效益更好,因雙變量CBP-GARCH(1,1)模型能捕捉資產價格間動態跳躍與動態波動性,因而利用其條件最小變異數避險組合可得到較佳的避險效益,此結果可為投資人避險之參考。
    The international political and economic effect the crude oil price volatility dramatically. One of the main topics is hedging for the crude oil price volatility of the investors. Crude oil spot and futures prices exist to discontinuously depend on rare events occurred. In order to capture the dynamic price jump and covariance between spot and futures returns, we use Chan(2003) to address bivariate the CBP-GARCH model. The discussions on this paper are using rolling window to investigate the out-of-sample hedging effectiveness for the minimum variance hedging portfolio.
    The data period probes Brent oil spot and futures price using daily data for the time span 2010 to 2011. The empirical results show that the bivariate GARCH (1,1) model and the bivariate CBP-GARCH (1,1) model have hedging effectiveness for minimum variance hedging portfolio. Moreover, hedging effectiveness of the bivariate CBP-GARCH (1,1) model better than the bivariate GARCH (1,1) model. The bivariate CBP-GARCH (1,1) model is able to capture the dynamic jump between the asset price volatility and dynamic correlation, thus the bivariate CBP-GARCH (1,1) model obtain is the better hedging effectiveness for minimum variance hedging portfolio. The results can be reference for investors.
    顯示於類別:[管理科學學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML259檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋