English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51483/86598 (59%)
Visitors : 8246764      Online Users : 97
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87461

    Title: 車多項式
    Other Titles: Rook polynomials
    Authors: 蔡志榮;Tsai Chih-Jung
    Contributors: 淡江大學中等學校教師在職進修數學教學碩士學位班
    高金美;Fu, Chin-Mei Kau
    Keywords: 車多項式;城堡多項式;遞迴關係式;rook polynomials;recurrence relation
    Date: 2012
    Issue Date: 2013-04-13 11:09:32 (UTC+8)
    Abstract: 國際象棋中的車可直行與橫行。如果在任意形狀的棋盤上放置數個車,使得這些車不互相攻擊,則每個車必須彼此位在不同行不同列上。車多項式是指將車放置在棋盤上的方法數之生成函數。車多項式可用來解決有限制的排列的問題。因此我們希望能藉由探討一些特殊國際象棋中的車可直行與橫行。如果在任意形狀的棋盤上放置數個車,使得這些車不互相攻擊,則每個車必須彼此位在不同行不同列上。車多項式是一種放置各種不同個數的車的方法數的生成函數。車多項式可用來解決有限制的排列的問題。因此我們希望能藉由探討一些特殊棋盤的車多項式,獲得更快速解決有限制的排列的問題。
    In combinatorial mathematics, a rook polynomial is a generating function of the number of ways to place non-attacking rooks on a board that looks like a checker board; that is, no two rooks can be placed in the same row or same column. The term "rook polynomial" was coined by John Riordan. Despite the name''s derivation from chess, the impetus for studying rook polynomials is their connection with counting the number of permutations with restricted positions.
    In this thesis, we mainly obtain the rook polynomials of four special boards:

    1.The rook polynomial of m×n chess board.
    2.The rook polynomial with restricted area
    3.The rook polynomial of path chess board
    4.The rook polynomial of cycle chess board
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback