English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51772/86996 (60%)
Visitors : 8373502      Online Users : 99
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87459

    Title: Uniqueness of the potential function of the vectorial Sturm-Liouville equations with general boundary conditions
    Other Titles: 在有限區間向量型Sturm-Liouville方程式的唯一性定理
    Authors: Chang, Tsorng-Hwa;Shieh, Chung-Tsun
    Contributors: 淡江大學數學學系博士班
    Keywords: 頻譜;Weyl matrix;Sturm-Liouville equation;Potential
    Date: 2012
    Issue Date: 2013-04-13 11:09:13 (UTC+8)
    Abstract: 關於定義在區間的非對稱形Sturm-Liouville 微分方程式的反問題研究及學習,Yurko ( [24] , 2006)利用Weyl矩陣,提出了矩陣邊界值問題的反問題有唯一性的定理。 在本篇論文,首先;對於Sturm-Liouville矩陣微分方程式含有一般的邊界條件的反問題,我們將証明ㄧ般的h1 , H1,亦可得到Q(x)有唯一性。利用矩陣型式邊界值反問題的唯一性,我們主要工作是在向量微分方程式邊界值反問題上,探求向量頻譜(spectral sets)與位階函數Q(x)唯一性的關係。 對於h1 = H1 = In ,我們找出某些個頻譜就可以決定Q(x)了。而若為一對稱矩陣或對角化矩陣,則個別僅需某些頻譜集合即可。 對於一般的h1 , H1,我們也獲得了一些相關的結果。
    Inverse spectral problems are studied for the non-self-adjoint matrix Sturm-Liouville differential equation on a finite interval. Using Weyl function, Yurko([24],2006) solved the inverse spectral problem for the matrix Sturm-Liouville operator on a finite interval with the boundary value problem L(Q(x), h, H ).
    At first, in this thesis, we try to solve the uniqueness theorem of the matrix-valued boundary value problem for arbitrary matrices h1 , h0 , H1 , H0 with the general boundary conditions. By the uniqueness theorem of L(Q(x),h1 , h0 , H1 , H0) described as above, our main work is to find those relations between spectra and potential Q(x) for the vectorial Sturm-Liouville differential equation.
    For h1 = H1 = In , we will give some characteristic functions corresponding to spectra to determine the Weyl matrix and to prove the uniqueness theorem. Furthermore, we also prove the uniqueness theorems for the vectorial Sturm-Liouville operators with real symmetric potential or real diagonal potential by given some spectra, respectively. We also obtain some results for arbitrary matrices h1 and H1.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback