English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52310/87426 (60%)
Visitors : 9092046      Online Users : 208
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87454

    Title: Existence and stability for dynamic equation on time scales
    Other Titles: 廣義區間上動態方程的存在性與穩定性
    Authors: 林尚文;Lin, Shang-Wen
    Contributors: 淡江大學數學學系博士班
    錢傳仁;Chyan, Chuan-Jen
    Keywords: 廣義區間;二階常微分方程;兩點邊界值問題;劣線性;超線性;Schauder固定點定理;Lyapunov穩定性;隱函數方程;Time scales;Green's function;Arzela-Ascoli theorem;Schauder fixed point theorem;sublinear;suplinear;Lyapunov Stability;Implicit Dynamic Equations;Index 1
    Date: 2012
    Issue Date: 2013-04-13 11:08:19 (UTC+8)
    Abstract: 本論文主要分兩個部分。首先,我們探討廣義區間上二階非線性常微分方程,搭配兩點邊界值條件之下正解的存在性,並進一步以劣線性及超線性的觀點提出關於外力項的限制條件。此外,將本文的結果應用於連續型的方程,也能將先前的研究結果加以推廣。
    In this thesis,we give a criterion for the existence of positive solutions for nonlinear second order ordinary differential equations with two-point boundary value conditions on time scales.
    Moreover, for some source terms which are in the sense of sublinear or superlinear, we also formulate corollaries and examples for applications and we improve previous results.
    Second, we investigate the stability of the solution x=0 for a class of quasilinear implicit dynamic equations on time scales of the form $A_tx^{Delta}=f(t,x)$.
    We deal with an index concept to study the solvability and use Lyapunov functions as a tool to approach the stability problem.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback