English  |  正體中文  |  简体中文  |  Items with full text/Total items : 56150/90161 (62%)
Visitors : 11557235      Online Users : 78
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87446

    Title: 評量現狀存活數據的比例風險假設
    Other Titles: Evaluating the proportional hazards assumption with current status survival data
    Authors: 王維;Wang, Wei
    Contributors: 淡江大學數學學系碩士班
    温啟仲;Wen, Chi-Chung
    Keywords: 現狀存活數據;比例風險假設;配適度指標;current status survival data;Cox proportional hazards assumption;goodness-of-fit index
    Date: 2013
    Issue Date: 2013-04-13 11:06:55 (UTC+8)
    Abstract: 右設限存活資料的迴歸診斷問題,已被廣泛的研究,但對於現狀存活數據之迴歸診斷問題較少。現狀存活數據包含共變量,檢查時間和在檢查時間事件是否發生的指標。在本論文中我們發展四種圖形法或量化法即:「log-log存活曲線圖」;「觀察與預期存活曲線圖」;「柯斯-斯奈爾殘差法」和「布萊爾-分數方法」來評量現狀存活數據的比例風險假設。並且提出四個對應的配適度指標。模擬結果顯示,此四個方法的表現是不錯的。另外,分析三組實際的現狀存活數據來說明所提方法的應用程序。
    Regression diagnostic problems have been extensively studied in the context of right-censored survival data but not many for current status survival data. Here the current status survival data, including covariates, an examination time, and an indicator for whether the failure has occurred by the examination time. In this thesis, we develop four graphical or quantitative methods for evaluating the Cox proportional hazards assumption of current status survival data, namely the “log-log survival curve plots”, “observed and expected survival curve plots”, “Cox-Snell residual method”, and “Brier-score method”. The corresponding goodness-of-fit indices for four methods are also proposed. Simulation results reveal good performance of four methods. Three real data sets are analyzed to illustrate the applications of the proposed methods.
    Appears in Collections:[Graduate Institute & Department of Mathematics] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback