本論文內容主要的工作是介紹K‧P理論之應用,進而推導出Luttinger-Kohn模型,進而將此模型應用在求解應變之下的帶結構圖以及求解其等效質量上。第一章為引言。第二章我們介紹了應變和應力的關係,以及在不同方向上之雙軸應變。第三章介紹K‧P理論以及單一能帶之K‧P理論的推導,並且利用Lowdin Perturbation Theory推導出Luttinger-Kohn模型,進而推導出在受應變下之的Pikus-Bir Hamiltonian,進而利用Luttinger-Kohn模型和Pikus-Bir Hamiltonian推導出在雙軸應變下之磊晶層成長在基底方向(001)的色散關係式以及其所對應之等效質量。第四章則為結論。 The major work of this thesis is the introduction to the k‧p theory of application. And then derive the Luttinger -Kohn model. Thus this model is applied to solve the strain under the band structure as well as solving its equivalent mass. Chapter I is an introduction. Chapter II describes the relationship between the strain and stress, and the biaxial strain in different directions. The chapter III describes the k‧p theory and the derivation of the single band theory, and the use of the Lowdin Perturbation Theory to derive out-of Luttinger-Kohn model. In turn is derived in the Pikus-Bir Hamiltonian by the strain. Luttinger-Kohn model and the Pikus-Bir Hamiltonian derive the dispersion relation of epitaxial layer growth under biaxial strain on the substrate direction (001) and their corresponding equivalent mass. Chapter IV is the conclusion.