English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9385284      線上人數 : 236
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/87375


    題名: 預測航空業破產 : Binary Logit與LDA分析之比較
    其他題名: Predicting airlines bankruptcies : a comparison of Binary Logit and LDA analysis
    作者: 康雅欣;Kang, Ya-Hsin
    貢獻者: 淡江大學經濟學系碩士班
    萬哲鈺;Wan, Jer-Yuh
    關鍵詞: 航空業;預測破產;Binary Logit Analysis;Linear Discriminant Analysis(LDA);Airlines;predicting of airlines
    日期: 2012
    上傳時間: 2013-04-13 11:00:30 (UTC+8)
    摘要: 在過去的三十年中,有許多的專家學者會以財務比率進行預測公司破產的預測,而在早期針對預測破產此一議題進行研究的學者Altman (1968),他的研究成為了後來許多對於各項不同產業進行破產所參考的文獻。本研究是依循著Pilarksi and Dinh (1999)修改自Altman所設計之模型而改良的P-score進行航空業破產之預測。本研究的研究對象為美國過去十年資本額前二十大從中挑選出十三家之航空業,所考量的變數除了財務變數外,也會考量其他經濟變數,並且以Binary Logit以及LDA兩種方式進行估計,進而比較哪一種方法較可正確預期破產。
    Much has been learned over the past thirty years about the subject of predicting bankruptcy of corporations using financial ratios. The early work of Altman (1968) set the stage for many subsequent studies of the topic using data from various industries. This study considers a modification of the original Altman model made by Pilarksi and Dinh (1999) involving a P-score to study the prediction of the bankruptcies of airlines. The paper here uses the most recent financial data on airlines from the US and includes other factors such as SARS and terrorism. It also makes use of a version of binary logit regression and attempts to determine the probability that a particular airline will go bankrupt. We also compare the Binary Logit Analysis and Linear Discriminant Analysis(LDA) to know which one is better on prediction of bankruptcies.
    顯示於類別:[經濟學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML312檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋