English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62379/95055 (66%)
Visitors : 2295947      Online Users : 15
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/85640

    Title: 兩個垂直集中力分別作用在矩形立方體和細長矩形柱子頂部及底部表面中心之解析解的探討
    Other Titles: The Discussion on the Analytical Solutions of two Concentrated Normal Forces Acting at the Centers of the Top and Bottom Surfaces of a Rectangular Block and a Slender Rectangular Column
    Authors: 邵德文;Shaw, Der-Wun;曾長偉;Tseng, Chang-Wei;陳冠宏;Chen, Kuang-Hung
    Contributors: 淡江大學機械與機電工程學系
    Keywords: 格林-邵函數;拍伯克維支-紐伯-布斯尼斯克函數;Mathematica;COSMOS/M;Green-Shaw function;Papkovitch-Neuber-Boussinesq function
    Date: 2001-12
    Issue Date: 2013-04-09 11:48:53 (UTC+8)
    Abstract: 本文引用短形立方體空間固體的格林-邵函數,因為共有六個邊界面,所以取2 6 項,
    即六十四頃。利用積分形式的格林公式,以及根據Eubanks 和Sternberg{ 1] 、[2] 對三度空
    間任意凸形體僅需要三個獨立拍伯克維支一紐伯一布斯尼斯克函數的證明結果,故選用Bx 、
    ι 、β 三個函數。解出Bx 、Bz 及β 函數後,得出其解析解,再利用電腦繪圖軟體Matrematica
    繪出解析解之位移與應力的分佈圈。並利用有限元素法軟體COSMOS/M 作分析,得到數
    The main topic of this paper is to use Green-Shaw functions for a rectangular block, then take 2/sup 6/ terms (64 terms).Then solve the Papkovitch-Neuber-Boussinesq functions with the Green;s function in integral form. Another reason is that according to proof of Eubanks and Sternberg, any three independent Papkovitch-Neuber-Boussinesq functions are required for any geometrical shaped convex domain in 3D space, so the selction of the three functions Bx,Bz,beta are justified. Then, solve the Bx, Bz, beta. After that we use plot software of Mathematica to draw the displacement and stress distribution digrams, and we use FEM software of COSMOS/M to get the numerical solution. Then, we compared the solutions by the analytical solution methods and the finite element solution. We find that results of displacement components and stress components have similar graphs and similar physical similarity. We get similar answers with an accuracy that may be acceptable. The results of this paper may provide some important information for future engineering works.
    Relation: 中華民國力學學會90年度年會暨第25屆全國力學會議=Proceedings of 25 National Conference of Theoretical and Applied Mechanics,12頁
    Appears in Collections:[機械與機電工程學系暨研究所] 會議論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback