English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49287/83828 (59%)
Visitors : 7155315      Online Users : 73
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/85634


    Title: 運用次奇點技巧之非直壁型浮體之全非線性波計算
    Other Titles: Applications of Desingularization Techniques in Fully Nonlinear Wave Calculation for Arbitray 2-D Floating Bodies
    Authors: 李宗翰;林忠安;鍾婉真;陳昌隆
    Contributors: 淡江大學機械與機電工程學系
    Keywords: 波浪運動;浮體;非線性分析;次奇異點技巧;Wave Motion;Floating Body;Nonlinear Analysis;Desingularization Technique
    Date: 2000-12
    Issue Date: 2013-04-09 11:48:25 (UTC+8)
    Abstract: 全非線性時間域數值分析模型之建立已成為研究浮體運動領域之必然發展趨勢。本文所述之次奇點數值模型,即The DELTA方法(The desingularizedeulerian-lagrangian time-domain approach method)。其中次奇點(Desingularization)之作法即將傳統方法中分布於計算區域面上之各奇點移至計算區域之外。本數值模型在時間域內採用全非線性之合併自由液面邊界條件及完全物體邊界條件。本文對直壁及非直壁形浮體作振盪時,其運動過程中,因為速度之變化而產生相對應之明顯非線性效應進行數值模擬;並以此模型進行計算、對計算結果作討論。
    The numerical model stated in this work takes the DELTA method (Thedesingularized eulerian-lagrangian time-domain approach method) as itstheoretical basis. Desingualrization means to move the singularitiesthat traditionally located right on the boundaries of thecomputational domain out of the domain, hence, the special treatmentfor the singularities is avoided. In addition, a mixedEulerian -Lagrangian description technique is adopted to solve theproblem of wave overturn. The boundary conditions applied in the timedomain numerical model built in this thesis are fully nonlinearcombined free surface boundary condition and exact body boundarycondition. The variations of free surface are simulated when differenttypes of non-wall-sided floating bodies are moving with forcedoscillating motions. The numerical results for the motions of a 2-Dwall-sided/non-wall-sided floating body agree well with experimentaldata. A series of a floating body under different modes of motions andwater depths are conducted, and then the application range of theDELTA method in handling arbitrary shapes of floating bodies istested. The numerical results obtained using the DELTA method arepresented and discussed in this paper.
    Relation: 八十九年度中華民國力學學會年會暨第二十四屆全國力學會議論文集=24th National Conference on Applied and Theoretical Mechanics, 頁N.A.(CD)
    Appears in Collections:[機械與機電工程學系暨研究所] 會議論文

    Files in This Item:

    File Description SizeFormat
    運用次奇點技巧之非直壁型浮體之全非線性波計算 _中文摘要.docx摘要14KbMicrosoft Word79View/Open
    運用次奇點技巧之非直壁型浮體之全非線性波計算 _英文摘要.docx摘要15KbMicrosoft Word33View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback