English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51771/86989 (60%)
Visitors : 8370063      Online Users : 57
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/84782

    Title: Numerical Simulation of Damping in the Flow Field of Laterally Driven Micro Comb Structures
    Other Titles: 側向振動梳狀微結構流場阻尼之數值計算
    Authors: 陳慶祥
    Contributors: 淡江大學航空太空工程學系
    Keywords: 梳狀微結構;黏滯阻尼;數值模擬Micro comb structure;Viscous damping;Numerical simulation
    Date: 2004
    Issue Date: 2013-03-22 19:38:07 (UTC+8)
    Publisher: 逢甲大學
    Abstract: 本文以數值方法求解Navier-Stokes方程組來模擬側向振動梳狀微結構流場,數 值計算所得之品質因子與實驗結果相當吻合。數值結果顯示作簡諧運動的結構底 面的阻尼約為 全部阻尼的66%,此一數值與Couette flow模型所計算結果相當吻 合,上表面、側表面及前表面之阻尼各約為全部的10-12%。滑動效應會減少約 7%的下表面阻尼。
    The Navier-Stokes simulation was used to simulate two laterally driven micro comb structures in this study. The total quality factors predicted numerically agree quite well with the experimental data. The numerical results show that the bottom surface of the oscillating structure contributes about 66% of the total damping and is very close to that predicted by the Couette flow model. The top, side, and edge surface each contributes about 10-12%. The slip effect was also included in this study. The slip effect reduces the viscous damping on the bottom surface of the oscillating structure by about 7%.
    Relation: 中國航空太空學會第四十六屆年會暨會員大會、2004航太學會/民航學會聯合學術研討會、國科會航太學門專題研究計畫成果發表會、教育部航太科技教育改進計畫成果發表會論文集,5p.
    Appears in Collections:[航空太空工程學系暨研究所] 會議論文

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback