English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62570/95233 (66%)
造訪人次 : 2553383      線上人數 : 327
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/83720

    題名: Vision-Based Tracking and Position Estimation of Moving Targets for Unmanned Helicopter Systems
    作者: Lin, Chien-Hong;Hsiao, Fu-Yuen;Hsiao, Fei-Bin
    貢獻者: 淡江大學航空太空工程學系
    關鍵詞: Target tracking and position estimation;image processing;Kalman filtering;unmanned helicopter
    日期: 2013-01
    上傳時間: 2013-03-20 16:56:37 (UTC+8)
    出版者: Hoboken: Wiley-Blackwell Publishing, Inc.
    摘要: The primary goal of this study is to track a ground-moving target using a machine-vision system installed on an unmanned helicopter, and to estimate its position if the target becomes unobservable. The machine-vision system is accomplished using real-time color images obtained from a charge-coupled device (CCD) camera mounted on a computer-controlled gimbaled system that can pitch and yaw. To avoid real-time image-tracking failure resulting from a moving target becoming concealed, the Kalman filtering technique is applied to predict the target's follow-on position, so that the camera can continuously track the target. The entire system is initially tested on the ground and then mounted on a helicopter for in-flight testing. The following three cases are shown in the flight tests: (1) an uncovered static target; (2) a moving visible target; and (3) a target that moves in a straight line at a constant speed and becomes temporarily concealed. The vision-based tracking system with the developed algorithm is successfully applied in all three cases.
    關聯: Asian Journal of Control 15(5), pp.1270–1283
    DOI: 10.1002/asjc.654
    顯示於類別:[航空太空工程學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋