This study proposes an efficient identity-based secure routing protocol based on Weil pairing, that considers symmetric and asymmetric links for Wireless Mesh Networks (WMNs). A wireless mesh network is a group of wireless mesh routers and several types of wireless devices (or nodes). Individual nodes cooperate by forwarding packets to each other, allowing nodes to communicate beyond the symmetric or asymmetric links. Asymmetric communication is a special feature of WMNs because of the wireless transmission ranges of different wireless devices may be different. The asymmetric link enhances WMN coverage. Ensuring security in WMNs has become an important issue over the last few years. Existing research on this topic tends to focus on providing security for routing and data content in the symmetric link. However, most studies overlook the asymmetric link in WMNs. This study proposes a novel distributed routing protocol that considers symmetric and asymmetric links. The proposed protocol guarantees the security and high reliability of the established route in a hostile environment, such as WMNs, by avoiding the use of unreliable intermediate nodes. The routes generated by the proposed protocol are shorter than those in prior studies. The major objective of the proposed protocol is to allow trustworthy intermediate nodes to participate in the path construction protocol. Using the proposed protocol, mesh clients out of mesh router wireless transmission range may discover a secure route to securely connect to the mesh router for Internet access. The proposed protocol enhances wireless mesh network coverage and assures security.
Relation:
IEICE Transactions on Communications E95.B(9), 頁2718-2727