English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60695/93562 (65%)
造访人次 : 1051484      在线人数 : 22
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/82992

    题名: Comparison of Dynamic Differential Evolution and Asynchronous Particle Swarm Optimization for Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder
    作者: Chiu, Chien-Ching;Sun, Chi-Hsien;Li, Chun-Fu;Hsiung, Shu-Fen
    贡献者: 淡江大學電機工程學系
    日期: 2012-10
    上传时间: 2013-03-13 03:00:16 (UTC+8)
    出版者: Miami: Applied Computational Electromagnetics Society, Inc.
    摘要: The application of optimization techniques for shape reconstruction of a perfectly conducting two-dimensional cylinder buried in a slab medium is reported in this paper, for which comparative study of four population-based optimization algorithms are conducted. The method of finite difference time domain (FDTD) is employed for the analysis of the forward scattering part, while the inverse scattering problem is transformed into an optimization one. Four algorithms including particle swarm optimization (PSO), asynchronous particle swarm optimization (APSO), differential evolution (DE) and dynamic differential evolution (DDE) are applied to reconstruct the location and shape of a 2-D perfectly conducting cylinder. The performance of these optimization techniques is tested through the use of simulated fields to mimic the experimental measurements contaminated with additive white Gaussian noise. The reconstructed results show that DDE and APSO algorithms outperform the algorithms DE and PSO in terms of convergence speed. And DDE is concluded as the best algorithm in this study.
    關聯: 1st Taibah University International Conference on Computing and Information Technology (ICCIT-2012)
    显示于类别:[電機工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈