Miami: Applied Computational Electromagnetics Society, Inc.
摘要:
The application of optimization techniques for shape reconstruction of a perfectly conducting two-dimensional cylinder buried in a slab medium is reported in this paper, for which comparative study of four population-based optimization algorithms are conducted. The method of finite difference time domain (FDTD) is employed for the analysis of the forward scattering part, while the inverse scattering problem is transformed into an optimization one. Four algorithms including particle swarm optimization (PSO), asynchronous particle swarm optimization (APSO), differential evolution (DE) and dynamic differential evolution (DDE) are applied to reconstruct the location and shape of a 2-D perfectly conducting cylinder. The performance of these optimization techniques is tested through the use of simulated fields to mimic the experimental measurements contaminated with additive white Gaussian noise. The reconstructed results show that DDE and APSO algorithms outperform the algorithms DE and PSO in terms of convergence speed. And DDE is concluded as the best algorithm in this study.
關聯:
1st Taibah University International Conference on Computing and Information Technology (ICCIT-2012)