淡江大學機構典藏:Item 987654321/81362
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60861/93638 (65%)
造訪人次 : 1111425      線上人數 : 23
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/81362


    題名: A Real-Time Object Recognition System Using Adaptive Resolution Method for Humanoid Robot Vision Development
    作者: Hsia, Chih-Hsien;Chang, Wei-Hsuan;Chiang, Jen-Shiun
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Robot;RoboCup;Adaptive Resolution Method;Object Recognition;Real-Time
    日期: 2012-06-01
    上傳時間: 2013-03-11 13:36:12 (UTC+8)
    出版者: 新北市:淡江大學
    摘要: The research of autonomous robots is one of the most important challenges in recent years. Among the numerous robot researches, the humanoid robot soccer competition is very popular. The robot soccer players rely on their vision systems very intensively when they are in the unpredictable and dynamic environments. This work proposes a simple and real-time object recognition system for the RoboCup soccer humanoid league rules of the 2009 competition. This vision system can help the robot to collect various environment information as the terminal data to complete the functions of robot localization, robot tactic, barrier avoiding, etc. It can reduce the computing complexity by using our proposed approach, adaptive resolution method (ARM), to recognize the critical objects in the contest field by object features which can be obtained easily. The experimental results indicate that the proposed approach can increase the real-time and accurate recognition efficiency.
    關聯: Journal of Applied Science and Engineering 15(2), pp.187-196
    DOI: 10.6180/jase.2012.15.2.12
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML305檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋