English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56562/90363 (63%)
造访人次 : 11860267      在线人数 : 97
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/80825


    题名: Low resolution method using adaptive LMS scheme for moving objects detection and tracking
    作者: Hsia, Chih-Hsien;Yeh, Yi-Ping;Wu, Tsung-Cheng;Chiang, Jen-Shiun;Liou, Yun-Jung
    贡献者: 淡江大學電機工程學系
    日期: 2010
    上传时间: 2013-03-07 14:01:55 (UTC+8)
    出版者: New York: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: This paper presents a new model for adaptive filter with the least-mean-square (LMS) scheme to train the mask operation on low resolution images. The adaptive filter theory with adaptive least-mean-square scheme (ALMSS) uses the training mask for moving object detection and tracking. However, the successful moving objects detection in a real surrounding environment is a difficult task due to noise issues such as fake motion or Gaussian noise. Many approaches have been developed in constrained environments to detect and track moving objects. On the other hand, the ALMSS approach can effectively reduce the noise with low computing cost in both fake motion and Gaussian noise environments. The experiments on real scenes indicate that the proposed ALMSS method is effective for moving object detection and tracking in real-time.
    關聯: Intelligent Signal Processing and Communication Systems (ISPACS), 2010 International Symposium on, pp.1-4
    DOI: 10.1109/ISPACS.2010.5704631
    显示于类别:[電機工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML242检视/开启
    LOW RESOLUTION METHOD USING ADAPTIVE LMS SCHEME FOR.pdf全文檔567KbAdobe PDF241检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈