English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7370255      線上人數 : 48
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/80824


    題名: Moving Object Tracking Using Symmetric Mask-Based Scheme
    作者: Hsia, Chih-Hsien;Huang, Ding-Wei;Chiang, Jen-Shiun;Wu, Zong-Jheng
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Lifting-based Discrete Wavelet Transform (LDWT);symmetric mask-based discrete wavelet transform (SMDWT);symmetric mask-based scheme (SMBS)
    日期: 2009
    上傳時間: 2013-03-07 14:01:51 (UTC+8)
    出版者: New York: Institute of Electrical and Electronics Engineers (IEEE)
    摘要: This work presents a new approach, symmetric mask-based scheme (SMBS), for moving object detection and tracking based on the symmetric mask-based discrete wavelet transform (SMDWT). This work presents a fast algorithm, called 2D SMDWT, to improve the critical issue of the 2D lifting-based Discrete Wavelet Transform (LDWT), and then obtains the benefit of low latency, reduced complexity, and low transpose memory for object detection. The successful moving object detection in a real surrounding environment is a difficult task due to noise issues such as fake motion or Gaussian noise. The SMBS approach can effectively reduce noises with low computing cost in both indoor and outdoor environments. The experimental results indicate that the proposed method can provide precise moving object detection and tracking.
    關聯: Information Assurance and Security, 2009. IAS '09. Fifth International Conference on, pp.173-176
    DOI: 10.1109/IAS.2009.150
    顯示於類別:[電機工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML147檢視/開啟
    Moving Object Tracking Using Symmetric Mask-Based Scheme.pdf全文檔373KbAdobe PDF148檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋