English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62805/95882 (66%)
造訪人次 : 3988972      線上人數 : 578
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/80648

    題名: A New Approach to Black Hole Quasinormal Modes: A Review of the Asymptotic Iteration Method
    作者: Cho, Hing-tong;A. S. Cornell;Jason Doukas;Huang, T.-R.;Wade Naylor
    貢獻者: 淡江大學物理學系
    關鍵詞: Black Hole Quasinormal Modes;General Relativity and Quantum Cosmology (gr-qc);High Energy Physics - Theory (hep-th)
    日期: 2012
    上傳時間: 2013-02-25 12:07:04 (UTC+8)
    出版者: New York: Hindawi Publishing Corporation
    摘要: We discuss how to obtain black hole quasinormal modes (QNMs) using the asymptotic iteration method (AIM), initially developed to solve second-order ordinary differential equations. We introduce the standard version of this method and present an improvement more suitable for numerical implementation. We demonstrate that the AIM can be used to find radial QNMs for Schwarzschild, Reissner-Nordstrom (RN), and Kerr black holes in a unified way.We discuss some advantages of the AIM over the continued fractions method (CFM). This paper presents for the first time the spin 0, 1/2 and 2QNMs of a Kerr black hole and the gravitational and electromagnetic QNMs of the RN black hole calculated via the AIM and confirms results previously obtained using the CFM.We also present some new results comparing the AIM to the WKB method. Finally we emphasize that the AIM is well suited to higher-dimensional generalizations and we give an example of doubly rotating black holes.
    關聯: Advances in Mathematical Physics , 281705(42 pages)
    DOI: 10.1155/2012/281705
    顯示於類別:[物理學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    281705.pdf874KbAdobe PDF444檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋