淡江大學機構典藏:Item 987654321/80336
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55176/89442 (62%)
造访人次 : 10657612      在线人数 : 33
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/80336


    题名: Adaptive dynamic CMAC neural control of nonlinear chaotic systems with L2 tracking performance
    作者: Hsu, Chun-Fei
    贡献者: 淡江大學電機工程學系
    关键词: Adaptive control;Neural control;Sliding-mode control;Chaotic system
    日期: 2012-08-01
    上传时间: 2013-01-22 18:36:00 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: The advantage of using cerebellar model articulation control (CMAC) network has been well documented in many applications. However, the structure of a CMAC network which will influence the learning performance is difficult to select. This paper proposes a dynamic structure CMAC network (DSCN) which the network structure can grow or prune systematically and their parameters can be adjusted automatically. Then, an adaptive dynamic CMAC neural control (ADCNC) system which is composed of a computation controller and a robust compensator is proposed via second-order sliding-mode approach. The computation controller containing a DSCN identifier is the principal controller and the robust compensator is designed to achieve L2 tracking performance with a desired attenuation level. Moreover, a proportional–integral (PI)-type adaptation learning algorithm is derived to speed up the convergence of the tracking error in the sense of Lyapunov function and Barbalat’s lemma, thus the system stability can be guaranteed. Finally, the proposed ADCNC system is applied to control a chaotic system. The simulation results are demonstrated that the proposed ADCNC scheme can achieve a favorable control performance even under the variations of system parameters and initial point.
    關聯: Engineering Applications of Artificial Intelligence 25(5), pp.997-1008
    DOI: 10.1016/j.engappai.2012.03.014
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML211检视/开启
    paper.pdf2107KbAdobe PDF508检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈