English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 50123/85142 (59%)
造訪人次 : 7909865      線上人數 : 51
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/80336

    題名: Adaptive dynamic CMAC neural control of nonlinear chaotic systems with L2 tracking performance
    作者: Hsu, Chun-Fei
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Adaptive control;Neural control;Sliding-mode control;Chaotic system
    日期: 2012-08-01
    上傳時間: 2013-01-22 18:36:00 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: The advantage of using cerebellar model articulation control (CMAC) network has been well documented in many applications. However, the structure of a CMAC network which will influence the learning performance is difficult to select. This paper proposes a dynamic structure CMAC network (DSCN) which the network structure can grow or prune systematically and their parameters can be adjusted automatically. Then, an adaptive dynamic CMAC neural control (ADCNC) system which is composed of a computation controller and a robust compensator is proposed via second-order sliding-mode approach. The computation controller containing a DSCN identifier is the principal controller and the robust compensator is designed to achieve L2 tracking performance with a desired attenuation level. Moreover, a proportional–integral (PI)-type adaptation learning algorithm is derived to speed up the convergence of the tracking error in the sense of Lyapunov function and Barbalat’s lemma, thus the system stability can be guaranteed. Finally, the proposed ADCNC system is applied to control a chaotic system. The simulation results are demonstrated that the proposed ADCNC scheme can achieve a favorable control performance even under the variations of system parameters and initial point.
    關聯: Engineering Applications of Artificial Intelligence 25(5), pp.997-1008
    DOI: 10.1016/j.engappai.2012.03.014
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    paper.pdf2107KbAdobe PDF495檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋