English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60696/93562 (65%)
造访人次 : 1043309      在线人数 : 23
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/80118

    题名: Multi-tier interactive genetic algorithms for the optimization of long-term reservoir operation
    作者: Wang, Kuo-Wei;Chang, Li-Chiu;Chang, Fi-John
    贡献者: 淡江大學水資源及環境工程學系
    关键词: Multi-tier interactive genetic algorithm (MIGA);Optimization;Reservoir operation;Decomposition
    日期: 2011-10
    上传时间: 2013-01-17 23:48:11 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: Genetic algorithms (GAs) are well known optimization methods. However, complicated systems with high dimensional variables, such as long-term reservoir operation, usually prevent the methods from reaching optimal solutions. This study proposes a multi-tier interactive genetic algorithm (MIGA) which decomposes a complicated system (long series) into several small-scale sub-systems (sub-series) with GA applied to each sub-system and the multi-tier (key) information mutually interacts among individual sub-systems to find the optimal solution of long-term reservoir operation. To retain the integrity of the original system, over the multi-tier architecture, an operation strategy is designed to concatenate the primary tier and the allocation tiers by providing key information from the primary tier to the allocation tiers when initializing populations in each sub-system. The Shihmen Reservoir in Taiwan is used as a case study. For comparison, three long-term operation results of a sole GA search and a simulation based on the reservoir rule curves are compared with that of MIGA. The results demonstrate that MIGA is far more efficient than the sole GA and can successfully and efficiently increase the possibility of achieving an optimal solution. The improvement rate of fitness values increases more than 25%, and the computation time dramatically decreases 80% in a 20-year long-term operation case. The MIGA with the flexibility of decomposition strategies proposed in this study can be effectively and suitably used in long-term reservoir operation or systems with similar conditions.
    關聯: Advances in Water Resources 34(10), pp.1343–1351
    DOI: 10.1016/j.advwatres.2011.07.004
    显示于类别:[水資源及環境工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈