English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3939236      在线人数 : 1029
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/79028

    题名: Temperature Uniformity Simulation of Vapor Chamber
    作者: Kang, Shung-wen;Lin, Jun-ying;Huang, Chun-hsien;Chen, Yu-tang
    贡献者: 淡江大學機械與機電工程學系
    关键词: vapor chamber;temperature uniformity;heating rate
    日期: 2012-10
    上传时间: 2012-11-21 16:16:22 (UTC+8)
    摘要: In this study, temperature uniformity and heating rate of multi-well vapor chambers of different materials were simulated and analyzed by CFD software at natural convection condition. Heat sources with a total heating power of 1200W were uniformly distributed to six 30×30mm2 rectangular vapor chambers for heating. Model size of the vapor chamber is 112×75×17.2mm, and its structure is consisted of upper plate and lower plate. The upper plate is 13.2mm thick, and has 173 holes with a diameter of 5mm and a depth of 10mm for each. The lower plate is rectangular with a thickness of 4mm. The vapor chambers are made of four main materials: copper, silver, aluminum and vapor chambers. Temperature uniformity is assessed by comparing highest temperature differences of vapor chambers. The simulation results showed that the vapor chamber has better temperature uniformity than other materials because it has higher heat content, slower heating rate and higher coefficient of heat conduction. Thus, vapor chambers are a better choice in selection of vapor chambers.
    關聯: IMPACT Conference 2012
    显示于类别:[機械與機電工程學系暨研究所] 會議論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈