English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49287/83828 (59%)
Visitors : 7151165      Online Users : 69
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/79022


    Title: Effect of silver nano-fluid on pulsating heat pipe thermal performance
    Authors: Lin, Yu-hsing;Kang, Shung-wen;Chen, Hui-lun
    Contributors: 淡江大學機械與機電工程學系
    Keywords: Concentration;Filled ratio;Pulsating heat pipes;Silver nano-fluid
    Date: 2008-08
    Issue Date: 2012-11-21 14:54:22 (UTC+8)
    Publisher: Kidlington: Pergamon
    Abstract: This paper presents preliminary experimental results on using copper tube having internal and external diameter with 2.4 mm and 3 mm, respectively, to carry out the experimental pulsating heat pipe. The working fluids include the silver nano-fluid water solution and pure water. In order to study and measure the efficiency, we compare with 20 nm silver nano-fluid at different concentration (100 ppm and 450 ppm) and various filled ratio (20%, 40%, 60%, 80%, respectively), also applying with different heating power (5 W, 15 W, 25 W, 35 W, 45 W, 55 W, 65 W, 75 W, 85 W, respectively). According to the experimental result in the midterm value (i.e. 40%, 60%) of filled ratio shows better. In the majority 60% of efficiency is considered much better. The heat dissipation effect is analogous in sensible heat exchange, 60% has more liquid slugs that will turn and carry more sensible heat, so in 60% of filled ratio, heat dissipation result is better than 40%, and the best filled fluid is 100 ppm in silver nano-fluid. Finally, we observed through the measurement comparison in thermal performance with pure water. When the heating power is 85 W, the average temperature difference and the thermal resistance of evaporator and condenser are decreased by 7.79 °C and 0.092 °C/W, respectively.
    Relation: Applied Thermal Engineering 28(11-12), pp.1312–1317
    DOI: 10.1016/j.applthermaleng.2007.10.019
    Appears in Collections:[機械與機電工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML126View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback