English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 59063/92570 (64%)
造访人次 : 732953      在线人数 : 48
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/78781


    题名: Watermarking for compressive sampling applications
    作者: Huang, hsiang-cheh;Chang, Feng-cheng;Wu, Chun-hsien;Lai, Wei-hao
    贡献者: 淡江大學資訊創新與科技學系
    关键词: compressive sampling;copyright protection;image quality;robustness;watermarking
    日期: 2012-07
    上传时间: 2012-10-22 15:38:33 (UTC+8)
    摘要: Compressive sampling is a newly developed topic in the field of data compression. For current researches, compressive sampling techniques focus on compression performances. There are very few papers aiming at the integration of watermarking into compressive sampling systems. In this paper, we propose an innovative scheme that considers the copyright protection of data with compressive sampling. By carefully utilizing the relationships between coefficients, very few amounts of transmitted coefficients are capable of reconstructing the image to some extent. Moreover, secret information embedded beforehand can be recovered with acceptable rate in correctly extracted bits even experiencing through the lossy channels for data delivery. Simulation results with our algorithm have demonstrated the effectiveness for integrating watermarking into compressive sampling systems.
    關聯: 2012 The Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp.223-226
    DOI: 10.1109/IIH-MSP.2012.60
    显示于类别:[資訊創新與科技學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML388检视/开启
    Watermarking for Compressive Sampling.pdf全文檔654KbAdobe PDF470检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈