English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60695/93562 (65%)
造訪人次 : 1050599      線上人數 : 35
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/78779

    題名: A refactoring method for cache-efficient swarm intelligence algorithms
    作者: Chang, Feng-Cheng;Huang, Hsiang-Cheh
    貢獻者: 淡江大學資訊創新與科技學系
    關鍵詞: Cache;Memory hierarchy;Miss rate;Swarm intelligence;Particle swarm optimization;Genetic algorithm
    日期: 2012-06
    上傳時間: 2012-10-22 15:28:02 (UTC+8)
    出版者: Philadelphia, PA: Elsevier Inc.
    摘要: With advances in hardware technology, conventional approaches to software development are not effective for developing efficient algorithms for run-time environments. The problem comes from the overly simplified hardware abstraction model in the software development procedure. The mismatch between the hypothetical hardware model and real hardware design should be compensated for in designing an efficient algorithm. In this paper, we focus on two schemes: one is the memory hierarchy, and the other is the algorithm design. Both the cache properties and the cache-aware development are investigated. We then propose a few simple guidelines for revising a developed algorithm in order to increase the utilization of the cache. To verify the effectiveness of the guidelines proposed, optimization techniques, including particle swarm optimization (PSO) and the genetic algorithm (GA), are employed. Simulation results demonstrate that the guidelines are potentially helpful for revising various algorithms.
    關聯: Information Sciences 192, pp.39–49
    DOI: 10.1016/j.ins.2010.02.025
    顯示於類別:[資訊創新與科技學系] 期刊論文


    檔案 描述 大小格式瀏覽次數
    A refactoring method for cache-efficient swarm intelligence algorithms.pdf385KbAdobe PDF1檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋