English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60696/93562 (65%)
造訪人次 : 1042135      線上人數 : 23
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/78706

    題名: Isometric Sliced Inverse Regression for Nonlinear Manifolds Learning
    作者: Yao, Wei-ting;Wu, Han-ming
    貢獻者: 淡江大學數學學系
    關鍵詞: Hierarchical clustering;Isometric feature mapping (ISOMAP);Nonlinear dimension reduction;Nonlinear manifold;Rank-two ellipse seriation;Sliced inverse regression
    日期: 2013-09
    上傳時間: 2012-10-20 10:41:17 (UTC+8)
    出版者: New York: Springer New York LLC
    摘要: Sliced inverse regression (SIR) was developed to find effective linear dimension-reduction directions for exploring the intrinsic structure of the high-dimensional data. In this study, we present isometric SIR for nonlinear dimension reduction, which is a hybrid of the SIR method using the geodesic distance approximation. First, the proposed method computes the isometric distance between data points; the resulting distance matrix is then sliced according to K-means clustering results, and the classical SIR algorithm is applied. We show that the isometric SIR (ISOSIR) can reveal the geometric structure of a nonlinear manifold dataset (e.g., the Swiss roll). We report and discuss this novel method in comparison to several existing dimension-reduction techniques for data visualization and classification problems. The results show that ISOSIR is a promising nonlinear feature extractor for classification applications.
    關聯: Statistics and Computing 23(5), pp.563-576
    DOI: 10.1007/s11222-012-9330-z
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    isoSIR-Yao_Wu.pdffirst page25KbAdobe PDF610檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋