淡江大學機構典藏:Item 987654321/78692
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58265/91820 (63%)
造访人次 : 13792915      在线人数 : 70
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/78692


    题名: A Block-Based Orthogonal Locality Preserving Projection Method for Face Super-Resolution
    作者: Yen, Shwu-huey;Wu, Che-ming;Wang, Hung-zhi
    贡献者: 淡江大學資訊工程學系
    关键词: Orthogonal Locality Preserving Projections;OLPP;manifold;super-resolution;General Regression Neural Network;GRNN
    日期: 2012
    上传时间: 2012-10-19 17:02:04 (UTC+8)
    出版者: Heidelberg: Springer Berlin Heidelberg
    摘要: Due to cost consideration, the quality of images captured from surveillance systems usually is poor. To restore the super-resolution of face images, this paper proposes to use Orthogonal Locality Preserving Projections (OLPP) to preserve the local structure of the face manifold and General Regression Neural Network (GRNN) to bridge the low-resolution and high-resolution faces. In the system, a face is divided into four blocks (forehead, eyes, nose, and mouth). The super-resolution process is applied on each block then combines them into a complete face. Comparing to existing methods, the proposed method has shown an improved and promising result.
    關聯: Lecture Notes in Computer Science 7197, pp.253-262
    DOI: 10.1007/978-3-642-28490-8_27
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML278检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈