English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 63246/95943 (66%)
造訪人次 : 4845190      線上人數 : 294
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/78660

    題名: A Statistical Approach with Syntactic and Semantic Features for Chinese Textual Entailment
    作者: Tu, Chun;Day, Min-yuh
    貢獻者: 淡江大學資訊管理學系
    關鍵詞: Textual Entailment;Semantic Features;Syntactic Features;Machine Learning;Support Vector Machine (SVM)
    日期: 2012-08-08
    上傳時間: 2012-10-19
    出版者: IEEE Press
    摘要: Recognizing Textual Entailment (RTE) is a PASCAL/TAC task in which two text fragments are processed by system to determine whether the meaning of hypothesis is entailed from another text or not. In this paper, we proposed a textual entailment system using a statistical approach that integrates syntactic and semantic techniques for Recognizing Inference in Text (RITE) using the NTCIR-9 RITE task and make a comparison between semantic and syntactic features based on their differences. We thoroughly evaluate our approach using subtasks of the NTCIR-9 RITE. As a result, our system achieved 73.28% accuracy on the Chinese Binary-Class (BC) subtask with NTCIR-9 RITE. Thorough experiments with the text fragments provided by the NTCIR-9 RITE task show that the proposed approach can significantly improve system accuracy.
    關聯: Proceedings of the IEEE International Conference on Information Reuse and Integration (IEEE IRI 2012), pp.59-64
    DOI: 10.1109/IRI.2012.6302991
    顯示於類別:[資訊管理學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    2012_IEEE_IRI2012__009_303.pdfA Statistical Approach with Syntactic and Semantic Features for Chinese Textual Entailment170KbAdobe PDF521檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋