English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 59061/92564 (64%)
造访人次 : 727286      在线人数 : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/78636

    题名: Simplification of Support Vector Solutions Using Artificial Bee Colony Algorithm
    作者: Tsai, Yih-Jia;Yeh, Jih-Pin
    贡献者: 淡江大學資訊工程學系
    关键词: Artificial bee colony (ABC) algorithm;discriminant function;support vector machine (SVM);swarm intelligence (SI)
    日期: 2012-12
    上传时间: 2012-10-18 11:46:42 (UTC+8)
    出版者: Singapore: World Scientific Publishing Co. Pte. Ltd.
    摘要: Support vector machines (SVMs) are a relatively recent machine learning technique. One of the SVM problems is that SVM is considerably slower in test phase caused by the large number of support vectors, which limits its practical use. To address this problem, we propose an artificial bee colony (ABC) algorithm to search for an optimal subset of the set of support vectors obtained through the training of the SVM, such that the original discriminant function is best approximated. Experimental results show that the proposed ABC algorithm outperforms some other compared methods in terms of the classification accuracy when the solution is reduced to the same size.
    關聯: International Journal of Pattern Recognition and Artificial Intelligence 26(8), 1250020(14pages)
    DOI: 10.1142/S0218001412500206
    显示于类别:[資訊工程學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈