English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60879/93651 (65%)
造訪人次 : 1187436      線上人數 : 11
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/78636

    題名: Simplification of Support Vector Solutions Using Artificial Bee Colony Algorithm
    作者: Tsai, Yih-Jia;Yeh, Jih-Pin
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Artificial bee colony (ABC) algorithm;discriminant function;support vector machine (SVM);swarm intelligence (SI)
    日期: 2012-12
    上傳時間: 2012-10-18 11:46:42 (UTC+8)
    出版者: Singapore: World Scientific Publishing Co. Pte. Ltd.
    摘要: Support vector machines (SVMs) are a relatively recent machine learning technique. One of the SVM problems is that SVM is considerably slower in test phase caused by the large number of support vectors, which limits its practical use. To address this problem, we propose an artificial bee colony (ABC) algorithm to search for an optimal subset of the set of support vectors obtained through the training of the SVM, such that the original discriminant function is best approximated. Experimental results show that the proposed ABC algorithm outperforms some other compared methods in terms of the classification accuracy when the solution is reduced to the same size.
    關聯: International Journal of Pattern Recognition and Artificial Intelligence 26(8), 1250020(14pages)
    DOI: 10.1142/S0218001412500206
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋