English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49279/83828 (59%)
Visitors : 7146933      Online Users : 60
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/78142


    Title: Nonparametric estimation of the dependence of a spatial point process on spatial covariates
    Authors: Baddeley, Adrian;Chang, Ya-Mei;Song, Yong;Turner, Rolf
    Contributors: 淡江大學統計學系
    Keywords: confidence intervals;density estimation;kernel smoothing;local likelihood;logistic regression;point process intensity;poisson point process;[geological] prospectivity mapping;spatial covariates;relative distributions;resource selection function;weighted distribution
    Date: 2012-06
    Issue Date: 2012-09-05 16:54:12 (UTC+8)
    Publisher: Somerville: International Press
    Abstract: In the statistical analysis of spatial point patterns, it is often important to investigate whether the point pattern depends on spatial covariates. This paper describes nonparametric (kernel and local likelihood) methods for estimating the effect of spatial covariates on the point process intensity. Variance estimates and confidence intervals are provided in the case of a Poisson point process. Techniques are demonstrated with simulated examples and with applications to exploration geology and forest ecology.
    Relation: Statistics and Its Interface 5(2), pp.221-236
    DOI: 10.4310/SII.2012.v5.n2.a7
    Appears in Collections:[統計學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML225View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback