English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49350/84015 (59%)
Visitors : 7268107      Online Users : 38
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/7776


    Title: 輻狀基底函數類神經網路理論探討及其降雨-逕流模式之應用
    Other Titles: A Study of Radial Basis Function Neural Networks for Modeling Rainfall-Runoff Proce
    Authors: 張麗秋
    Contributors: 淡江大學水資源及環境工程學系
    Keywords: 輻狀基底函數;類神經網路;降雨-逕流模式;高斯函數;變異數
    Date: 2005
    Issue Date: 2009-03-16 16:57:51 (UTC+8)
    Abstract: 輻狀基底函數類神經網路(RBFNN)雖屬於類神經網路的一種,但其演算法主要是將輸入向量映射到高維度的基底函數,再經由這些函數的線性組合所構成;因此,不但擁有類神經網路優異的學習能力,同時,也很容易從其映射的關係中來瞭解系統輸入與輸出間的數學關係。 一般RBFNN大都選用高斯函數為其基底函數,每個中心點僅相對應一個變異數,此方式將忽略輸入變數資料間特性與其分佈的差異性,無法凸顯出輸入變數的差異及其對系統行為的影響;本研究擬對RBFNN的理論進行深入探討,藉由不同的輻狀基底函數與不同的變異數,進一步地說明RBFNN對於資料處理的能力與優點,並將模式運用模擬與推估不同函數以評估網路效能,最後選用石門水庫上游集水區為研究區域,進行歷年颱洪時間降雨資料與水位資料之統計分析,以建構降雨-逕流預測模式,以評估網路之效能,同時,也可以進一步地瞭解降雨與逕流歷程間的關係。
    Appears in Collections:[水資源及環境工程學系暨研究所] 研究報告

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback