English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57517/91034 (63%)
造访人次 : 13463463      在线人数 : 365
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77647


    题名: A Two- Stage Cardholder Behavioural Scoring Model Using Artificial Neural Networks and Data Envelopment Analysis
    作者: Chen, I-Fei
    贡献者: 淡江大學管理科學學系
    关键词: Chi-square Automatic Interaction Detector (CHAID);Artificial Neural Networks (ANNs);Data Envelopment Analysis (DEA);Behavioural Scoring;Data Mining
    日期: 2011-03
    上传时间: 2012-06-28 11:09:02 (UTC+8)
    出版者: Gyeongju-si: Advanced Institute of Convergence I T
    摘要: Since the databases that banks use for analysis of cardholders’ repayment behaviours are usually large and complicated, and the extant classification techniques hardly offer 100% correct classification accuracy so as to possibly incur a considerable loss associated with type II errors, the prediction of cardholders’ future payment behaviours has been still referred to as a difficult task in the credit industry. This paper proposes a two-stage cardholder behavioural scoring model, with merits of artificial neural networks (ANNSs) and data envelopment analysis (DEA), which not only enables banks to verify the ANNSs predicted results of each cardholder’s future repayment behaviour as well as to identify creditworthy cardholders who is profitable with low risks, but also provides guidelines to improve contributions of each inefficient cardholder for card issuer profitability.
    關聯: International Journal of Advancements in Computing Technology 3(2), pp.87-94
    DOI: 10.4156/ijact.vol3.issue2.11
    显示于类别:[管理科學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML189检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈