English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 54451/89232 (61%)
造訪人次 : 10570373      線上人數 : 35
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77470


    題名: 整合移動漸近線法與模糊理論於多目標拓樸最佳化之研究
    其他題名: An integrated method of moving asymptotes and fuzzy theory for multi-objective topology optimization
    作者: 康祐嘉;Kang, Yu-Chia
    貢獻者: 淡江大學航空太空工程學系碩士班
    張永康;Chang, Yeong-Kang
    關鍵詞: 移動漸近線法;拓樸最佳化;模糊理論;B-splin函數;Method of Moving Asymptotes;Topology optimization;Fuzzy Theory;B-spline curve
    日期: 2012
    上傳時間: 2012-06-21 06:47:59 (UTC+8)
    摘要: 本研究之目的為整合移動漸近線法與模糊理論於結構多目標拓樸最佳化設計。研究中使用ANSYS作為結構分析的工具,並利用複合材料分配法和移動漸近線法求得最佳結構拓樸外形。本文應用模糊理論中歸屬函數以及交集決策的概念,將多目標最佳化的問題轉換為單目標最佳化問題,最後求得結構多目標拓樸最佳化問題的Pareto最佳解。本研究使用三階段最佳化設計的技巧來進行結構拓樸最佳化。第一階段利用對偶法得到初始拓樸圖形。第二階段使用混合法,移除不必要元素,並保留必要元素,使拓樸圖形更為清晰。第三階段再應用B-Spline函數修正不平滑的拓樸邊界外形。
    本論文將執行四個不同的範例求解結構多目標拓樸最佳化設計的問題,並探討各階段拓樸外形的差異。範例中顯示經過三階段拓樸最佳化後,可以得到較清晰且平滑之結構外形。
    An integrated method of moving asymptotes and fuzzy theory for multi-objective topology optimization is developed in this study. The finite element analysis software ANSYS is used for structural analysis. By using the method of material distribution with method of moving asymptotes, the optimum topology design of structure is obtained. In this paper, the multi-objective optimization problem transfer to single optimization problem by utilizing the concept of the fuzzy theory, which is using membership function and intersection set of decision-making. After implementing the concept above, the Pareto solution of the multi-objective topology optimization problem can be obtained. Three stages of topology design were employed in this study. In first stage, a dual method is used to obtain the initial topology design. To eliminate unnecessary element and retain necessary element by element growth-removal combined method (EGRCM) in second stage. The B-Spline curve is used to smooth the design shape in the final stage.
    Four different multi-objective problems are demonstrated in this paper. The topology optimization result will be discussed in each stage. After using three stages topology design, the results shows that the optimum shapes of structures are more clear and smooth.
    顯示於類別:[航空太空工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML211檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋