English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3967529      Online Users : 271
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/77467

    Title: 分離更新式FastSLAM之設計與實現
    Other Titles: Design and implementation of separated-update FastSLAM
    Authors: 陳雨政;Chen, Yu-Cheng
    Contributors: 淡江大學機械與機電工程學系博士班
    王銀添;Wang, Yin-tien
    Keywords: SLAM;單眼視覺系統;反深度特徵;Simultaneous Localization and Mapping (SLAM);FastSLAM;Monocular vision;Inverse depth
    Date: 2012
    Issue Date: 2012-06-21 06:47:41 (UTC+8)
    Abstract: 本論文提出分離更新式FastSLAM方法,分離FastSLAM過程中機器人狀態與地標狀態之更新,藉以改善SLAM過程中機器人狀態的預測,在高運動雜訊情形下能有較佳表現;同時亦探討單眼視覺式SLAM,使具備複雜運動模型的行動機器人系統在SLAM過程中對機器人狀態之估測可脫離運動平台之限制。研究內容包含FastSLAM理論之推導、以雷射測距儀為感測器之FastSLAM與分離更新式FastSLAM的實現、單眼視覺系統透視投影法與反深度特徵初始化的推導,反深度特徵初始化與FastSLAM方法之結合,單眼視覺FastSLAM系統之實現。
    In this dissertation, separated-update FastSLAM (FastSLAM SU), a modified FastSLAM method is developed in order to improve the robot state prediction in high motion uncertainty situation by updating the robot and landmarks state separately. Meanwhile, for complex motion platform robots, a free moving camera SLAM is also discussed. This research contains introduction, simulation and implementation of FastSLAM and FastSLAM SU and combination of FastSLAM and monocular vision system with inverse depth feature initialization.
    Appears in Collections:[Graduate Institute & Department of Mechanical and Electro-Mechanical Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback