English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8154581      線上人數 : 105
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77462


    題名: 基於KD-TREE的高資料量最近鄰居搜尋法
    其他題名: KD-TREE based nearest neighbor search for large quantity data
    作者: 謝雅如;Hsieh, Ya-Ju
    貢獻者: 淡江大學資訊工程學系碩士班
    顏淑惠;Yen, Shwu-Huey
    關鍵詞: 特徵點;KD-樹;KDA;最近鄰居搜尋;影像拼接;Feature Point;KD-Tree;Arbitrary KD-tree (KDA);Nearest Neighbor (NN);Image Stitching
    日期: 2012
    上傳時間: 2012-06-21 06:47:06 (UTC+8)
    摘要: 尋找事先未經訓練的最近鄰居,有許多的應用,例如: 馬賽克圖片,影像匹配,影像檢索,影像縫合。當資料量是大量的而且資料的維度高,如何有效地找到最近的鄰居就顯得非常重要。在這篇文章中,我們比較若干KD-樹的變化型以搜索最近鄰居。基於合成資料的測試,我們得出的結論是 KD樹的方法運作在有相關性資料比運作在不相連性的隨機資料好。還有,利用影像產生SIFT特徵點的測試,我們得出本文所提出的方法KDA以演算法分析其計算複雜度,比傳統的KD-Tree省下不少執行效能。最後,我們結合本文所提出的方法加以應用到影像拼接上。
    Finding nearest neighbors without training in advance has many applications, such as image mosaic, image matching, image retrieval, and image stitching. When the quantity of data is huge and dimension is high, how to efficiently find the nearest neighbor (NN) becomes very important. In this article, we propose a variation of the KD-tree, Arbitrary KD-tree (KDA) which build tree without evaluate variances. Multiple KDA not only can be built efficiently it also processes an independent tree structures when data is large. Tested by extended synthetic databases and real-world SIFT data, we concluded that KDA method has advantages of satisfying accuracy performance in NN problem as well as computation efficiency.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML220檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋