English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49279/83828 (59%)
Visitors : 7145046      Online Users : 61
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77380


    Title: 在有界變分函數上有關Ostrowski型之不等式研究
    Other Titles: On inequality of Ostrowski's type for mapping of bounded variation
    Authors: 周義銘;Chou, Yi-Ming
    Contributors: 淡江大學數學學系博士班
    楊國勝
    Keywords: 有界變分;全變分;Ostrowski不等式;bounded;total variation;Ostrowski inequality
    Date: 2012
    Issue Date: 2012-06-21 06:38:21 (UTC+8)
    Abstract: 首先第一章,先介紹Ostrowski不等式令 f: [a,b] → R 在 [a,b] 上是一個有界變分的函數。則下列不等式

    |∫_a^b▒〖f(x) dx-(b-a)f(x)〗|≤[1/2 (b-a)+|x-(a+b)/2|] V_a^b (f)

    對於每一個 x 在 (a,b)上都成立,這裡的 V_a^b (f) 是 f 在 [a,b] 上的全變分。
    第二章,我們介紹一些已建立有關於Ostrowski型的不等式。
    第三章,我們要展示我們所建立的Ostrowski不等式。
    第四章,我們要介紹一些特殊的加權的 Ostrowski不等式和一些特殊的改良的 Ostrowski 不等式。我們得到了幾個重要的不等式。像是不等式在有界變分函數之下加權的梯形積分及在有界變分函數之下 ‘‘加權的 Ostrowski’’ 不等式。
    最後,我們要介紹特殊平均數應用在我們的主要結果上。
    In this dissertation, it consists of five chapters.
    In the first chapter, we introduce Ostrowski inequality for function of bounded variation. The inequality
    |∫_a^b▒〖f(x) dx-(b-a)f(x)〗|≤[1/2 (b-a)+|x-(a+b)/2|] V_a^b (f)
    holds for all x∈(a,b) where f: [a,b] → R is a mapping of bounded variation on [a,b] and V_a^b (f) is the total variation of f on the interval [a,b].
    In the second chapter, we introduce Some established Ostrowski''s type inequalities.
    In the third chapter, we present some refinements of Ostrowski inequalities.
    In the forth chapter, we present some particular weighted ostrowski inequality and some particular integral of improved ostrowski Inequality. We get some important results. Some inequalities like the weighted trapezoid inequality for mappings of bounded variation and the ‘weighted Ostrowski inequality for mappings of bounded variation.
    Finally, we discuss Some Particular integral inequality about my main results.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML103View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback