English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51931/87076 (60%)
造訪人次 : 8487919      線上人數 : 119
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77380


    題名: 在有界變分函數上有關Ostrowski型之不等式研究
    其他題名: On inequality of Ostrowski's type for mapping of bounded variation
    作者: 周義銘;Chou, Yi-Ming
    貢獻者: 淡江大學數學學系博士班
    楊國勝
    關鍵詞: 有界變分;全變分;Ostrowski不等式;bounded;total variation;Ostrowski inequality
    日期: 2012
    上傳時間: 2012-06-21 06:38:21 (UTC+8)
    摘要: 首先第一章,先介紹Ostrowski不等式令 f: [a,b] → R 在 [a,b] 上是一個有界變分的函數。則下列不等式

    |∫_a^b▒〖f(x) dx-(b-a)f(x)〗|≤[1/2 (b-a)+|x-(a+b)/2|] V_a^b (f)

    對於每一個 x 在 (a,b)上都成立,這裡的 V_a^b (f) 是 f 在 [a,b] 上的全變分。
    第二章,我們介紹一些已建立有關於Ostrowski型的不等式。
    第三章,我們要展示我們所建立的Ostrowski不等式。
    第四章,我們要介紹一些特殊的加權的 Ostrowski不等式和一些特殊的改良的 Ostrowski 不等式。我們得到了幾個重要的不等式。像是不等式在有界變分函數之下加權的梯形積分及在有界變分函數之下 ‘‘加權的 Ostrowski’’ 不等式。
    最後,我們要介紹特殊平均數應用在我們的主要結果上。
    In this dissertation, it consists of five chapters.
    In the first chapter, we introduce Ostrowski inequality for function of bounded variation. The inequality
    |∫_a^b▒〖f(x) dx-(b-a)f(x)〗|≤[1/2 (b-a)+|x-(a+b)/2|] V_a^b (f)
    holds for all x∈(a,b) where f: [a,b] → R is a mapping of bounded variation on [a,b] and V_a^b (f) is the total variation of f on the interval [a,b].
    In the second chapter, we introduce Some established Ostrowski''s type inequalities.
    In the third chapter, we present some refinements of Ostrowski inequalities.
    In the forth chapter, we present some particular weighted ostrowski inequality and some particular integral of improved ostrowski Inequality. We get some important results. Some inequalities like the weighted trapezoid inequality for mappings of bounded variation and the ‘weighted Ostrowski inequality for mappings of bounded variation.
    Finally, we discuss Some Particular integral inequality about my main results.
    顯示於類別:[數學學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML110檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋