English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49378/84106 (59%)
Visitors : 7381423      Online Users : 43
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77378


    Title: Cox模型中自變數有異質性測量誤差時之估計方法研究
    Other Titles: The analysis of Cox regression model when covariates are subject to heteroscedastic measurement errors
    Authors: 黃揚閔;Huang, Yang-Min
    Contributors: 淡江大學數學學系碩士班
    黃逸輝
    Keywords: Cox比例風險模型;異質性;測量誤差;誤差增量;Cox regression model;heteroscedastic;measurement error;error augmentation
    Date: 2012
    Issue Date: 2012-06-21 06:38:16 (UTC+8)
    Abstract: 在本文中,我們探討Cox比例風險模型中自變數有異質性(heteroscedastic)測量誤差時的迴歸參數估計方法;若量測次數與存活時間相關時,那麼平均量測值的變異數會與存活時間有關,就會造成異質性測量誤差的問題。本文使用小測量誤差的估計方法,它不需在測量誤差上有分配的假設,直接以泰勒展開式來近似含有測量誤差的分數函數;除此之外,再與其它文獻所提過的估計方法一起做比較,這其中還包含新的誤差增量估計方法。最後我們利用電腦模擬在許多不同情況下各種估計方法的表現,並對結果加以討論。
    We consider the heteroscedastic measurement error problem in Cox regression model. The heteroscedastic measurement error can happen naturally when the number of replicates is related to the survival time or censoring time. To accommodate the effect of heteroscedastic measurement error in estimation, we consider a small measurement error assumption approach as well as the error augmentation for the conventional corrected score and conditional score. Their performances were evaluate by a simulation study.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML179View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback