English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56816/90548 (63%)
造访人次 : 12100449      在线人数 : 139
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77256


    题名: Quantum entanglement, unitary braid representation and Temperley-Lieb algebra
    作者: Ho, C.L.;Solomon, A.I.;Oh, C.H.
    贡献者: 淡江大學物理學系
    日期: 2010-11
    上传时间: 2012-06-14 09:24:43 (UTC+8)
    出版者: Les Ulis: E D P Sciences
    摘要: Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate directly, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.
    關聯: Europhysics Letters 92(3), 30002(5pages)
    DOI: 10.1209/0295-5075/92/30002
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0295-5075_92_3_30002.pdf170KbAdobe PDF248检视/开启
    indext.html170KbAdobe PDF238检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈