English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 52310/87426 (60%)
造訪人次 : 9091109      線上人數 : 359
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77256


    題名: Quantum entanglement, unitary braid representation and Temperley-Lieb algebra
    作者: Ho, C.L.;Solomon, A.I.;Oh, C.H.
    貢獻者: 淡江大學物理學系
    日期: 2010-11
    上傳時間: 2012-06-14 09:24:43 (UTC+8)
    出版者: Les Ulis: E D P Sciences
    摘要: Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate directly, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.
    關聯: Europhysics Letters 92(3), 30002(5pages)
    DOI: 10.1209/0295-5075/92/30002
    顯示於類別:[物理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    0295-5075_92_3_30002.pdf170KbAdobe PDF212檢視/開啟
    indext.html170KbAdobe PDF205檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋