淡江大學機構典藏:Item 987654321/77240
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55025/89277 (62%)
造访人次 : 10605198      在线人数 : 35
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77240


    题名: Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks
    作者: Chiang, Y.M.;Chang, L.C.;Tsai, M.J.;Wang, Y.F.;Chang, F.J.
    贡献者: 淡江大學水資源及環境工程學系
    日期: 2011
    上传时间: 2012-06-14 09:11:30 (UTC+8)
    出版者: Goettingen: Copernicus GmbH
    摘要: Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.
    關聯: Hydrology and Earth System Sciences 15(1), pp.185-196
    DOI: 10.5194/hess-15-185-2011
    显示于类别:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1027-5606_15(1)p185-196.pdf608KbAdobe PDF222检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈