English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62570/95226 (66%)
造访人次 : 2508305      在线人数 : 239
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/77042

    题名: A group lasso approach for non-stationary spatial–temporal covariance estimation
    作者: Hsu, Nan-Jung;Chang, Ya-Mei;Huang, Hsin-Cheng
    贡献者: 淡江大學統計學系
    关键词: coordinate descent;Frobenius loss;group lasso;Kalman filter;penalized least squares;spatial prediction
    日期: 2012-02
    上传时间: 2012-05-24 15:17:49 (UTC+8)
    出版者: Chichester: John Wiley & Sons Ltd.
    摘要: We develop a new approach for modeling non-stationary spatial–temporal processes on the basis of data sampled at fixed locations over time. The approach applies a basis function formulation and a constrained penalized least squares method recently proposed for estimating non-stationary spatial-only covariance functions. In this article, we further incorporate the temporal dependence into this framework and model the spatial–temporal process as the sum of a spatial–temporal stationary process and a linear combination of known basis functions with temporal dependent coefficients. A group lasso penalty is devised to select the basis functions and estimate the parameters simultaneously. In addition, a blockwise coordinate descent algorithm is applied for implementation. This algorithm computes the constrained penalized least squares solutions along a regularization path very rapidly. The resulting dynamic model has a state-space form, thereby the optimal spatial–temporal predictions can be computed efficiently using the Kalman filter. Moreover, the methodology is applied to a wind speed data set observed at the western Pacific Ocean for illustration.
    關聯: Environmetrics 23(1), pp.12–23
    DOI: 10.1002/env.1130
    显示于类别:[統計學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    A group lasso approach for non-stationary spatial–temporal covariance estimation.pdf911KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈