English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49279/83828 (59%)
Visitors : 7146945      Online Users : 44
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/77038


    Title: Statistical inference for a lognormal step-stress model with Type-I censoring
    Authors: Lin, Chien-tai;Chou, Cheng-chieh
    Contributors: 淡江大學數學學系
    Keywords: Accelerated life test;Fisher information matrix;bootstrap;cumulative exposure model;maximum likelihood method;simulated annealing algorithm
    Date: 2012-06
    Issue Date: 2012-05-24 11:05:42 (UTC+8)
    Publisher: Piscataway: Institute of Electrical and Electronics Engineers
    Abstract: We consider a k-step step-stress model under Type-I censoring. We obtain the maximum likelihood estimates (MLE) of the parameters assuming a cumulative exposure model with lifetimes being lognormal distributed. A two-stage algorithm integrating a modified simulated annealing algorithm with a Newton-Raphson method is proposed to compute the MLE of the parameters. We also derive the confidence intervals for the parameters using asymptotic distributions, a likelihood ratio test, and parametric bootstrap resampling methods. The performance of the point and interval estimation of the parameters are evaluated through a Monte Carlo simulation study.
    Relation: IEEE Transactions on Reliability 61(2), pp.361-377
    DOI: 10.1109/TR.2012.2194178
    Appears in Collections:[數學學系暨研究所] 期刊論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML131View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback