English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54137/89020 (61%)
造访人次 : 10553394      在线人数 : 13
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/76940


    题名: 微奈米電泳前瞻技術及生醫工程與光電材料工程之應用-子計畫三:電荷可調節型生物膠體粒子在軟性電荷可調節奈米孔道中之電泳行為
    其它题名: Electrophoretic Behavior of Charge-Regulated Biocolloids in a Soft Charge-Regulated Nanopore
    作者: 曾琇瑱
    贡献者: 淡江大學數學學系
    关键词: 電泳;電雙層極化;電荷可調節型軟性粒子;邊界效應;軟性電荷可調節奈米孔道
    日期: 2011
    上传时间: 2012-05-22 22:16:06 (UTC+8)
    摘要: 理論研究軟性生物膠體奈米粒子在帶電奈米孔道內的電泳對於未來生物、奈米科技產業發展具有很大的重要性。早期理論主要集中在表面帶固定電位或固定表面電荷密度模式之硬性孔道,而此研究計畫將延伸此模式至更符合實際狀況之電荷可調整模式硬管或表面覆蓋一離子可穿透、電荷可調整薄膜軟管。特別一提的是,本計畫將仔細探討多重離子物種、電雙層極化與來自帶電奈米孔道之電滲透流效應對生物膠體粒子電泳行為的影響。在擬進行的研究計畫中,吾人將分三個階段來進行分析,第一階段將探討一軟性生物膠體粒子在硬性電荷可調整型奈米孔道中之電泳行為。第二階段計畫將軟性生物膠體粒子薄膜層延伸至更符合實際狀況之電荷可調整模式,並將探討表面覆蓋離子可穿透薄膜層改質之軟性奈米孔道對此粒子電泳行為的影響。計畫最後一個階段,將仔細探討軟性電荷可調整型奈米孔道對電荷可調整型生物膠體粒子電泳行為的影響,此階段所模擬的系統十分接近真實狀況下,電動力驅動下生物型奈米粒子在生物型奈米孔道或表面覆蓋pH敏感型薄膜奈米孔道中的移動行為。本研究計畫成果相信將對應用於分離生物膠體奈米粒子的官能性奈米孔道設計或相關實際成果的解釋將有十分重大的貢獻。
    Theoretical investigation of electrophoresis of soft biocolloidal nanoparticles such as DNA and virus in a charged nanopore has a fundamental importance for the future development of bio- and nanotechnology. Previous studies focused mainly on rigid pore surface with constant surface potential or surface charge density. Here, it is extended to more realistic cases where the rigid surface is of charge-regulated nature or covered by an ion-penetrable, charge-regulated membrane layer. In particular, the effects of multiple ionic species, double-layer polarization and the electroosmotic flow arising from a charged nanopore on the electrophoretic behavior of the particle are discussed. In the first phase of the proposed research the electrophoretic behavior of a soft biocolloid in a rigid, charge-regulated cylindrical nanopore will be discussed. The analysis will be extended to the case where the membrane layer of a particle is of charge-regulated nature and the rigid surface of a nanopore is covered by an ion-penetrable membrane layer in the second phase of the proposed research. In the last phase of the proposed research the effect of a soft, charged cylindrical nanopore on the electrophoretic behavior of a soft, charge-regulated biocolloid will be analyzed, which simulates electrokinetic driven biological nanoparticles translocation in a biological nanopore or a rigid nanopore covered by a pH-sensitive membrane. The results founded provide valuable information for both the design of a functionalized nanopore to separate biocolloidal nanoparticle and the interpretation of experimental data.
    显示于类别:[數學學系暨研究所] 研究報告

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈