English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 49593/84835 (58%)
造访人次 : 7686729      在线人数 : 70
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/76895


    题名: Traveling wave front for a two-component lattice dynamical system arising in competition models
    作者: Guo, Jong-Shenq;Wu, Chang-Hong
    贡献者: 淡江大學數學學系
    关键词: Traveling front;Lattice dynamical system;Competition model;Monostable;Minimal wave speed;Wave profile
    日期: 2012-04
    上传时间: 2012-05-22 17:01:26 (UTC+8)
    出版者: Maryland Heights: Academic Press
    摘要: We study traveling front solutions for a two-component system on a one-dimensional lattice. This system arises in the study of the competition between two species with diffusion (or migration), if we divide the habitat into discrete regions or niches. We consider the case when the nonlinear source terms are of Lotka–Volterra type and of monostable case. We first show that there is a positive constant (the minimal wave speed) such that a traveling front exists if and only if its speed is above this minimal wave speed. Then we show that any wave profile is strictly monotone. Moreover, under some conditions, we show that the wave profile is unique (up to translations) for a given wave speed. Finally, we characterize the minimal wave speed by the parameters in the system.
    關聯: Journal of Differential Equations 252(8), pp.4357-4391
    DOI: 10.1016/j.jde.2012.01.009
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1204jde.pdf352KbAdobe PDF174检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈