淡江大學機構典藏:Item 987654321/76316
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62830/95882 (66%)
造訪人次 : 4044848      線上人數 : 928
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/76316


    題名: 具有累積損害過程之加速退化檢定之研究
    其他題名: A Research on Accelerated Degradation Test with a Cumulative Damage Process(II)
    作者: 蔡宗儒
    貢獻者: 淡江大學統計學系
    關鍵詞: Arrhenius law 模型;漂移參數;exponential law 模型;power law模型;逐步應力模型Arrhenius law model;draft parameter;exponential law model;power law model;step-stress loading method
    日期: 2011
    上傳時間: 2012-05-07 13:42:28 (UTC+8)
    摘要: Following my project in August 1, 2010 to July 31, 2011, this research investigates the statistical inference of lifetimes of high-reliability products under the accelerated degradation test model. Considering the physical conditions and requirements in practical test situations for high-reliability products, this research will develop an inference procedure with three phases for accelerated degradation data based on the stochastic process methods. In Phase I, a training program was conducted for personnel. We set up experimental conditions for the constant-stress accelerated degradation test and collaborated with the Electronics and Opto-Electronics Research Laboratories, Industrial Technology Research Institute in Taiwan for collecting degradation information of high power light emitting diode lamps. The statistical model and inference methods will be developed, too. The Phase I project was granted by the National Science Council, Taiwan from August 1, 2010 to July 31, 2011. Till November 30, 2011, we implemented the accelerated degradation test over 3000 hours for light emitting diode lamps with six combinations of stress levels of ambient temperature and current. In Phase II, we will evaluate the quality of gathered degradation information of light emitting diode lamps and make a decision to develop an extra accelerated degradation test or not. Then start to conduct an intensive simulation study to evaluate the performance of the proposed method. Moreover, the proposed method will be illustrated by the degradation data of light emitting diode lamps. In Phase III, the performance of the estimated mean life and percentiles of the lifetimes of light emitting diode lamps using the proposed method will be compared with those using different existing methods in the literature. Moreover, a study will be conducted to determine the optimal design conditions including the sample size, the measurement frequency and the stopping time of test.
    Following my project in August 1, 2010 to July 31, 2011, this research investigates the statistical inference of lifetimes of high-reliability products under the accelerated degradation test model. Considering the physical conditions and requirements in practical test situations for high-reliability products, this research will develop an inference procedure with three phases for accelerated degradation data based on the stochastic process methods. In Phase I, a training program was conducted for personnel. We set up experimental conditions for the constant-stress accelerated degradation test and collaborated with the Electronics and Opto-Electronics Research Laboratories, Industrial Technology Research Institute in Taiwan for collecting degradation information of high power light emitting diode lamps. The statistical model and inference methods will be developed, too. The Phase I project was granted by the National Science Council, Taiwan from August 1, 2010 to July 31, 2011. Till November 30, 2011, we implemented the accelerated degradation test over 3000 hours for light emitting diode lamps with six combinations of stress levels of ambient temperature and current. In Phase II, we will evaluate the quality of gathered degradation information of light emitting diode lamps and make a decision to develop an extra accelerated degradation test or not. Then start to conduct an intensive simulation study to evaluate the performance of the proposed method. Moreover, the proposed method will be illustrated by the degradation data of light emitting diode lamps. In Phase III, the performance of the estimated mean life and percentiles of the lifetimes of light emitting diode lamps using the proposed method will be compared with those using different existing methods in the literature. Moreover, a study will be conducted to determine the optimal design conditions including the sample size, the measurement frequency and the stopping time of test.
    顯示於類別:[統計學系暨研究所] 研究報告

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋