English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60696/93562 (65%)
造访人次 : 1053601      在线人数 : 33
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/76309


    题名: 函數型迴歸分析於曲線資料分類之應用
    其它题名: Curve Data Classification via Functional Regression Analysis
    作者: 李百靈
    贡献者: 淡江大學統計學系
    关键词: Classification;Curve data;Discriminant analysis;Functional data analysis;Functional principal components analysis;Functional regression;Stochastic process
    日期: 2011
    上传时间: 2012-05-07 13:41:48 (UTC+8)
    摘要: 本計畫將討論曲線資料(curve data)的分類(classification)問題,尤其是當存 在有與分類相關的解釋變數(covariates)時,探討如何將這些解釋變數有用之訊 息有效加入函數型分類方法中。我們將曲線資料視為隨機過程的實際觀測值, 並假設在多個已知分類下,各類隨機函數的平均函數與共變異函數均可能相 異。在給定相關解釋變數的訊息下,我們將利用條件函數型主成份分析 (conditional functional principal components)建立適當的曲線分類模式與規則。 本計畫將透過實際資料與模擬驗證的方式來比較所提出之方法與其他已發展 之函數型分類方法的表現,期望加入解釋變數相關訊息的分類方法可以提高分 類正確率。
    We propose a new functional classification method for classifying the curve data with accommodating additional covariate information. The data are viewed as realizations of a mixture of stochastic processes and each sub-process corresponds to a known class. We assume that all the sub-processes have different mean and covariance functions, and both the mean and covariance functions depend on the covariates. The curve data of each class are represented by various conditional functional principal components analysis (FPCA) models. We expect that the classification error rate can be reduced by considering the related covariates. The proposed method will be evaluated and compared with other previous functional classification approaches through simulation study and data examples
    显示于类别:[統計學系暨研究所] 研究報告

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈