Abstract: | 本計畫「萌發材料開發及應用」將研究奈米顆粒鑽石(particulate diamonds)、石墨 烯(graphene)奈米碳材及前瞻氧化物(emerging oxide)材料之開發,並將建立「電子 損失能譜(EELS)」、高功率X 光繞射儀、顯微拉曼光譜儀、CVD/PVD 碳膜製備儀、高解 析掃描陰極螢光光譜儀(CL)等設備,從微光譜學及微觀結構、微觀化學鍵結的角度, 探討這些材料產生特殊物理與化學性質的機制。此外,藉由此種原子級分析儀器的建 立,強化「理學院貴重儀器中心」,支援校內各種尖端材料之研究,預期將可大幅提升 本校有關尖端材料之研發質與量。 本研究應用之新材料為: (i) 奈米顆粒鑽石材料之開發(Development of the application of nano-particulate diamond): 奈米顆粒鑽石在開發成為新穎磁性材料、電子場發射材料、及生醫材料方面的可能 性是非常有潛力:(i)電子方面可能應用:奈米顆粒鑽石經過高溫熱處理後,會在其 表面形成一奈米sp2鍵結層。其中zigzag邊緣(zigzag edges)具有奈米磁性。換言之, 若能控制奈米石墨層zigzag邊緣之比例,便可以有效調整顆粒奈米鑽石之磁性。此 外,若將顆粒奈米顆粒鑽石鍍在奈米尺吋之模板(template)上,將是優越的場發射 元件。(ii) 生醫方面的應用:奈米顆粒鑽石沒有含毒之雜質,顆粒細小易為細胞接 受,且其表面可以做各種表面化學修飾,因此,是在生醫方面應用很有潛力的材料。 (iii) CVD法合成奈米鑽石薄膜之孕核層:「奈米顆粒鑽石」經活化後,直接就是鑽 石晶核,可以直接成長鑽石薄膜。在基版上,可以有效率的在石英及其他透明基版 上成長鑽石薄膜(這是一般成長鑽石薄方法所無法達成的目標),對探討摻雜對鑽石 薄膜之光穿透性及電子傳導性質時特別重要。 (ii) 尖端奈米碳材料之研究(Cutting-edge Nano-Carbon Materials) 石墨烯是由碳原子構成的二維晶體,碳原子排列與石墨的單原子層一樣,在2004年 被曼徹斯特大學A.K.Geim領導研究組發現。目前有三種方法製備石墨烯,一種是加 熱SiC的方法,另一種是輕微摩擦法或撕膠帶法,第三種是化學分散法。對石墨烯進 行氧化及化工處理,然後使他們漂浮在水中,石墨烯會剝落並形成有強力鍵的單層。 這些被稱為氧化石墨烯(grapheme oxide)的層狀材料被測量到具有32 GPa的拉伸模 數。它可以包裹起來形成零維的富勒烯,捲起來形成一維的奈米碳管,層層堆積形 成三維的石墨。 Graphene自發現以來短時間內即在國外成為研究的熱點,相關的化 學研究極少。本計畫將建立自製石墨烯及不同sp3/sp2比例的碳膜材料,及其性質鑑 定的能力,並進行化學修飾,應用於能源材料、複合材料、催化材料等領域,並有 理論模擬計算的配合,是極具前瞻性的研究。 (iii) 前沿功能型氧化物材料之研究(study on frontier functional oxide materials) 過渡金屬氧化物一直是科學界所重視的研究課題。它不僅在基礎物理學的發展上有 深遠的影響,對應用科技的發展也有極重要的貢獻。本計畫將探討近年來受到高度 重視的透明導電氧化物和鐵基氧化物及其相關材料的原子結構、電子組態與磁性。 透明導電氧化物薄膜應用於平面顯示器是近期光電產業中重要且熱門的研究題目之 一,隨著半導體技術不斷進步,透明導電氧化物薄膜的應用與發展亦更加廣泛。近 年發現藉由摻雜不同的輕元素(如AlZnO, BZnO)可調變氧化物之基本物理及化學等 特性。而所摻雜之元素在氧化物結構中之分佈位置,對氧化物之基本物理化學相關 特性更是影響重大,此方面之相關研究值得深入加以探討。另外,最近新發現的鐵 基高溫超導(LaFeAsFxO1-x)、多鐵性材料(LuFe2O4, BiFeO3)、或是具有巨磁阻效應的 LaFeO3 及SrFeO3。此類金屬氧化物的傳輸行為(電性或磁性)跟金屬的氧化態有很 大的關連性,而此金屬氧化態又受其鄰近的原子所影響。結構上,這些金屬氧化物 都是由金屬和氧所形成的八面體所組成的鈣鈦礦結構(perovskite structure),所 以當此八面體的環境有所改變時,如氧缺陷或是鍵長有所改變時,也會造成金屬氧 化態的改變,更進而影響其傳輸行為。 This project “Study on the development of emerging materials and their physics & chemistry” will investigate the particulate diamonds,grapheme nano-carbon materials and frontier oxide materials. We will estibalish the capital equipments, including EELS, CL, micro-Raman, high power XRD and CVD/PVD growth apparatus. We shall explore the mechanism of the physics nd chemistry for these materials, from the spectroscopy and microstructure and micro-chemistry. Moreover, we expect that via the establishment of the atomic level analyzing equipments for “Tamkang capital equipment center”, we can promot significantly the research potential on the emerging materials, which will be the special feature of Tamkang University. The materials of interest includes: (i) Development of the application of particulate nano-diamond: Particulate nano-diamond has become a material of great potential for novel magnetic materials, electron field emission materials, and biomaterials. (i) the electronic application : the surface of nano-diamond particulates will be converted into sp2-bond after thermal treatment. The zigzag edges of nano-graphite are paramagnetic. Therefore, we can adjust the magnetic properties of the nano-diamond particulates via control on the proportion of the zigzag edges. On the other hand, the nano-diamond particulates can exhibit marvelous electron field emission characteristics when they are deposited on nano-templates. (ii) biomedical applications: nano-diamond particulates are biocompatible. The surface can be easily modified chemically. These materials have great potential for bio-application. (iii) nucleat layer for CVD growth of Ultra-nano-crystalline diamonds: nano-diamond particulates can be a good nuclei for growing UNCD when they are properly activated. Such a process render the deposition of UNCD films on transparent substrates, which will have great potentials for optical applications. (ii) Cutting-edge Nano-Carbon Materials: Graphene is a two dimensional arrange of carbon atoms. It was discovered for the first time in 2004 by A.K.Geim group in Manchester University. There are 3 methods for synthesizing graphene so far: the robbering of graphite, detachment from graphite and chemical separation. The graphene oxide exhibies the strong elastic modulus as 32 GPa. The graphene can be transformed into 0D fullerene, 1D carbon nanotubes, and 3D graphite, has become focus of research soon after it was discovered. However, the research on the chemistry is surprisingly few. We will first built an apparatus for synthesize graphene and carbon films with various sp2/sp3 ratio, characterizing them. We will explore the potential for the energy application, composite materials, catalysis, via the proper surface modification. We will also perform theoretical model. (iii) Frontier functional oxide materials: Transition metal oxides have caught great attention due to their interesting physics fundamental and important application potential for novel science and technology. We will especially focus on the traparent oxides and iron-based oxides, their atomic, electronic and magnetic structures. Transparent oxides are important in the development of the planar display and other electro-optical application. It has been found recently that, via the doping of light element, the physical and chemical behavior can be markedly altered. Such a modification is closely related to the site of occupancy of the additives in the materials, which requires detailed studies. Moreover, many novel physical properties have been found in the iron based materials, including super-conductores (LaFeAsFxO1-x), multiferroics (LuFe2O4, BiFeO3) or giant magneto resistance (LaFeO3 & SrFeO3). The transport properties (electrical or magnetic) of these materials are greatly influnced by the oxidation states of the cations, which, in turn, is closely related the interaction of the cations with the nearest neighbors. Whenever, the oxygen defects or the bond length was distorted, the oxidation states were largely modified, which call for systematic investigation, for purpose of understanding the origin of the physics and chemistry for the novel characteristics. |