English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54931/89277 (62%)
造访人次 : 10602357      在线人数 : 30
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/76160


    题名: Robot Visual Simultaneous Localization and Mapping in Dynamic Environments
    作者: Wang, Yin-Tien;Chi, Chen-Tung;Hung, Shiun-Kai
    贡献者: 淡江大學機械與機電工程學系
    关键词: Visual Simultaneous Localization;and Mapping (vSLAM);Speeded-Up Robust Features;SURF;Moving Object Detection;MOD
    日期: 2012-04-15
    上传时间: 2012-05-02 18:51:29 (UTC+8)
    出版者: Valencia: American Scientific Publishers
    摘要: This paper focuses on the problem of moving object detection (MOD) in robot visual simultaneous localization and mapping (vSLAM) system. A MOD algorithm is designed using the spatial geometric constraint of the stationary landmarks in the environment. Based on the MOD algorithm, the moving objects can be discriminated from the stationary landmarks. The proposed MOD algorithm is independent of the state estimator and capable of dealing with the kidnapping problem in SLAM automatically. Meanwhile, the method of speeded-up robust feature (SURF) is employed in the algorithm to provide a robust detection for image features as well as a better description of landmarks in the map of a visual SLAM system. Experiments are carried out on hand-held camera sensors to verify the performances of the proposed algorithms for SLAM tasks in the indoor environments. The results show that the integration of MOD and SURF is efficient to improve the robustness of robot SLAM system.
    關聯: Advanced Science Letters 8, pp.229-234
    DOI: 10.1166/asl.2012.2448
    显示于类别:[機械與機電工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    05ASL-2448-ICETI.pdf616KbAdobe PDF3检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈