English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62797/95867 (66%)
Visitors : 3734934      Online Users : 387
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/75866


    Title: ZnO摻雜入(R M)2 (Zr Ti)2 O7-δ 作為SOFC電解質材料的研究開發
    Other Titles: Research and development of SOFC electrolyte materials, zinc oxide doped (R,M)2(Zr,Ti)2O7-?
    Authors: 高惠春
    Contributors: 淡江大學化學學系
    Keywords: 中溫固態氧化物燃料電池電解質;焦綠石結構;螢石結構;鈦酸鈣礦結構;碳酸鹽複合材料;Electrolyte of IT-SOFC;pyrochlore;fluorite;perovskite;carbonate composite
    Date: 2012
    Issue Date: 2012-04-25 09:07:10 (UTC+8)
    Abstract: 本計畫主要的研究目標是開發氧離子導體可適用作中溫 (400700C) 固態氧化物燃料電池 (IT-SOFC)的電解質材料。傳統的SOFC的操作溫度是8001000C,對組裝材料有很高的要求,使得材料的研究變成SOFC技術進入市場的主要挑戰。降低SOFC的操作溫度需要較高導電度的氧離子導體,它們是有pyrochlore 結構的 R2Zr2O7 和R2(Zr,Ti)2O7 (其中R是稀土元素),螢石結構的 (La0.2Ce0.8)O1.9、(Sm0.2Ce0.8)O1.9、Bi3(Nb1xMgx)O7-1.5x和Bi3(Nb1xHox)O7-x以及有perovskite 結構的 LaAlO3和 BaZrO3。以上的氧化物材料若是導電度不夠好時,會加入碳酸鹽,並利用碳酸鹽的低熔點,使樣品在500C時即有接近101 Scm1左右的離子導電度。這是可以作為電解質材料的一個條件。材料中的Ti、Ce、Bi 和Nb可能會有混合原子價存在,使其電子導電度會在高溫時變得明顯。此時,可能會有短路危機,不利於作為燃料電池電解質,所以,這些材料的使用溫度不能太高。如何穩定這些元素的原子價將也是本研究的重要方向。基本上會以摻雜或包覆的方式去穩定Ti4+、Ce4+、Bi3+ 和Nb5+ 的原子價。
    In this project, development of high oxide ion conductors for the intermediate temperature (400700C) solid oxide fuel cell (IT-SOFC) application is the major goal. The high operating temperature (HT, 8001000C) of the conventional SOFC technology puts very high demands on the materials and technology, which is the reason why the materials R&D still pose a major challenge for further development of the SOFC technology into the market. In order to lower the operating temperature, the electrolyte should have higher oxide ion conductivity. Possible candidates are R2Zr2O7 and R2(Zr,Ti)2O7, where R = rare earth element, with pyrochlore structure, (La0.2Ce0.8)O1.9, (Sm0.2Ce0.8)O1.9, Bi3(Nb1xMgx)O7-1.5x and Bi3(Nb1xHox)O7-x with fluorite structure, and LaAlO3 and BaZrO3 with perovskite structure. If the above oxides do not have good enough ion conductivity, carbonates would be mixed with oxides to form composites to increase the conductivity of the materials to around 101 Scm1 at 500C. That is a requirement for an electrolyte material. If the materials have mixed valence cations existing, electronic conductivity would be increased at high temperature and become improper electrolytes due to the possibility of shortage within the cell. Therefore, the operating temperature is limited. How to stabilize the preferred valence state is an important direction of this research. Doping or encapsulation is an approach to stabilize the valence states of Ti4+、Ce4+、Bi3+ and Nb5+.
    Appears in Collections:[Graduate Institute & Department of Chemistry] Research Paper

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback