English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 57064/90742 (63%)
造訪人次 : 12480484      線上人數 : 157
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/75831


    題名: Feature Selection for Cancer Classification on Microarray Expression Data
    作者: Hsu, Hui-huang;Lu, Ming-da
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Cancer Classification;Feature Selection;Microarray;Pearson Correlation Coefficient;Support Vector Machine
    日期: 2008-11
    上傳時間: 2012-04-17 22:07:19 (UTC+8)
    出版者: IEEE; International Fuzzy Systems Association; National Kaohsiung University of Applied Sciences
    摘要: Microarray is an important tool in gene analysis research. It can help identify genes that might cause various cancers. In this paper, we use feature selection methods and the support vector machine (SVM) to search for the disease-causing genes in microarray data of three different cancers. The feature selection methods are based on Euclidian distance (ED) and Pearson correlation coefficient(PCC). We investigated the effect on prediction results by training the SVM with different numbers of features and different kinds of kernels. The results show that linear kernel is the fittest kernel for this problem. Also, equal or higher accuracy can be achieved with only 15 to 100 features which are selected from 7129 or more features of the original data sets.
    關聯: Proceedings of the Eighth International Conference on Intelligent Systems Design and Applications (ISDA'08) v.3, pp.153-158
    DOI: 10.1109/ISDA.2008.198
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Feature Selection for Cancer Classification on Microarray Expression Data.pdf334KbAdobe PDF534檢視/開啟
    index.html0KbHTML264檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋