We develop a new approach for gender recognition. In this paper, our approach uses the rectangle feature vector (RFV) as a representation to identify humans' gender from their faces. The RFV is computationally fast and effective to encode intensity variations of local regions of human face. By only using few rectangle features learned by AdaBoost, we present a gender identifier. We then use nonlinear support vector machines for classification, and obtain more accurate identification results.
關聯:
Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), pp.521-524