English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54547/89241 (61%)
造访人次 : 10577353      在线人数 : 47
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/75801


    题名: A Novel Method for Mining Temporally Dependent Association Rules in Three-Dimensional Microarray Datasets
    作者: Liu, Yu-cheng;Lee, Chao-hui;Chen, Wei-chung;Shin, J. W.;Hsu, Hui-huang;Tseng, Vincent S.
    贡献者: 淡江大學資訊工程學系
    关键词: Data Mining;Microarray;Gene Expression Analysis;Association Rule Mining
    日期: 2010-12
    上传时间: 2012-04-16 09:42:50 (UTC+8)
    出版者: Institute of Electrical and Electronics Engineers(IEEE)
    摘要: Microarray data analysis is a very popular topic of current studies in bioinformatics. Most of the existing methods are focused on clustering-related approaches. However, the relations of genes cannot be generated by clustering mining. Some studies explored association rule mining on microarray, but there is no concrete framework proposed on three-dimensional gene-sample-time microarray datasets yet. In this paper, we proposed a temporal dependency association rule mining method named 3D-TDAR-Mine for three-dimensional analyzing microarray datasets. The mined rules can represent the regulated-relations between genes. Through experimental evaluation, our proposed method can discover the meaningful temporal dependent association rules that are really useful for biologists.
    關聯: Proc. 2010 International Computer Symposium, pp. 759-764
    DOI: 10.1109/COMPSYM.2010.5685410
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    A Novel Method for Mining Temporally Dependent Association Rules in.pdf全文檔363KbAdobe PDF278检视/开启
    index.html0KbHTML197检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈